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Abstract

In this paper we present three different al-
gorithms to approximately reconstruct cer-
tain parts of an object that can only be
seen in one view due to occlusion. Single
view 3D reconstruction is generally hard
to carry out due to the under-determined
nature. Nevertheless, we make certain ob-
servations on the general shape of the tar-
get object and make use of other parts of
the object which we can accurately trian-
gulate. We test our algorithms on different
objects and conduct both qualitative and
quantitative analysis on results we get.

1 Introduction

Taking a video camera and walking around an ob-
ject to automatically construct a 3D model has
been a long-standing dream in computer vision.
What seems unreachable 20 years ago is no close
to our abilities thanks to the many discoveries in
3D geometry and image matching over the years.
The various 3D construction techniques have also
been able to take advantage of the developments
in digital cameras and the increasing resolution
and quality of images they produce along with the
large collections of imagery that have been estab-
lished on the Internet. One of the famous appli-
cation is the Photo Tourism project such as the re-
construction of the Coliseum in Rome as shown in
Figure 1.

Figure 1: Reconstructed 3D model of the Coli-
seum
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However, what currently hinders the use of
more 3D information in other domains seems to be
the specialization of 3D reconstruction methods to
specific settings. State of the art multi-view stereo
methods are able to produce accurate and dense
3D reconstructions. Unfortunately, many of them
are tuned to settings like the Middlebury bench-
mark (Kazhdan et al., 2006), where the camera
poses are known, silhouette information can eas-
ily be retrieved and the number of views are ade-
quately large (usually more than 20). In this pa-
per, we aim to remove these requirement of con-
text information in the standard multi-view meth-
ods through three approximation methods - patch,
symmetry, and ratio approximation.

The rest of the paper is organized as follows.
Section 2 reviews the inadequacies of some of the
existing approaches to the problems and our solu-
tions. Section 3 gives a detailed explanation of our
methodology as well as the underlying principles
of our approximation methods. Section 4 shows
the results of our methods on various objects sub-
ject to various camera settings and illuminations.
Section 5 conclude our work.

2 Related Work

2.1 Existing Literature

Apart from the above mentioned works and the
references within the Middlebury benchmark,
there are a couple of works, which are closely re-
lated to the approaches we present in this paper.

Yezzi (Yezzi et al., 2003) proposes a method
where the cameras are refined during the dense
reconstruction process. However, their silhouette
based approach is not well suited for general im-
age sequences. It works best for textureless scenes
where the background can be clearly separated
from the object.

Furukawa (Furukawa et al., 2008) describes an
iterative camera calibration and reconstruction ap-



proach. A large set of patches is used to refine the
camera poses. Vice versa the refined camera poses
are used to improve the reconstruction. To com-
pute the dense surface they use the method from
Kazhdan (Kazhdan et al., 2006). The resulting
surface is fitted to the patches by the solution of
a Poisson problem. As the spatial Poisson prob-
lem does not take photoconsistency into account,
results suffer in areas not covered by sufficiently
many patches.

2.2  Our Contribution

We aim to address the issues associated with the
approaches mentioned above. In particular, the
approximations we propose enable us to obtain
an accurate object structure without the need for
a background of clear contrast nor the need for
a large number of photos to provide a sufficient
coverage for each possible patch. In addition, our
symmetry approximation method provides a sim-
ple but effective way of solving the reconstruction
of symmetric objects. This method, in fact, goes
beyond the problem of reconstruction, and is po-
tentially also applicable in image recognition and
even graphical reasoning.

3 Approach

3.1 General Methodology

In general triangulation, we solve the following si-
multaneous equations to find the 3D location of
the unknown point P.

MP =p;

MoP = p
M, and M, € R3** and the unknown point P €
R4*1. However, in our scenario only one of the
two observation p; and ps is observable. Thus
we have 4 degrees of freedoms and only 3 scalar
equations, resulting in an under-determined linear
equation system.

Therefore, the remaining part of the paper ex-
plores different heuristics we can use in order to
give one more constraint (one more scalar equa-
tion) with respect to P.

As a preliminary step, we first find matching
points on different images and apply triangulation
to find their 3D locations. This gives us some basic
information about certain parts of the object which
can be used in our methods.

3.2 Technical Details

For this part we are going to elaborate on the main
heuristics we adopt in approximating the 3D loca-
tions of points that can only be seen in one view.

3.2.1 Patch Approximation

In this section we employ the techniques of tes-
sellation in computer graphics to help us recover-
ing the shapes of our occluded object. We subdi-
vide the surface of the object into planar polygons,
called tessellators or patches, and simulate the
smoothness of the surface with non-trivial amount
of such patches, see figure 2. The idea is as fol-
low: we first assign each point on the object to a
planar polygon, then we calculate the position of
the polygon in 3D space, and afterwards, we re-
cover the exact location of each point by finding
the corresponding 3D points in the polygons.

Figure 2: Tessellation of a Smooth Object

Before we proceed with our discussions we
need to define some terminologies that we will use
in this section and the remaining part of the paper.
A polygon, or a patch, is a 3D planar tessellator.
Its projection into 2D image is a region. Further-
more, if two points lie on the same polygon, their
projections lie within the same region. Full view
image refers to the image in which we can see
the overall shape of the object, as in figure 6(b)
whereas the occluded image refers to the image in
which object is partially occluded by obstacles, as
in figure 6(a).

1. Edge detection

Consider the intersection of two patches.
Since the points belong to two different re-
gions and lie on two disparate planar poly-
gons, we shall expect surface orientation dis-
continuities near the region, one of the main
sources of image brightness discontinuities in
the perceived images, i.e. edges. Therefore
we shall be able to detect some really thin



edges along the corresponding regions inter-
sections.

Notice that these edges are delicate as the ob-
ject surface is rather smooth and the changes
of gradients are relatively mild. Thus we use
Canny Edge Detector by drastically lower-
ing the two thresholds to capture such minute
parts. We apply the canny edge detection
techniques to the full view image near the ob-
ject region and obtain the preliminary result
for the edge map. For an example of how it
looks like, see figure 11 in Experimental Re-
sults section.

. Edge completion

Nonetheless, some of the edges are discontin-
ued as there are nontrivial amount of noises
in the images. Post-processing is warranted
as to connect dots and complete the separa-
tion of planes. We employ two methods in
achieving our goals: (1) a methodology simi-
lar to non-max-suppression + edge continua-
tion in the canny edge detector but with more
leniency, in that we would allow slightly
more deviations from the suggested path ac-
cording to the gradient directions and (2) a
window-based geometric methodology that
scan through each patches of the images and
connect two dots if both have been labeled
edges and one has a gradient direction is tan-
gent to vector connecting these two dots. For
instance in figure 3, the two blue blocks were
designated as edge block by Canny detector
and the one on the left bottom has a gradient
direction perpendicular to the line segment
connecting the centers of the two blue blocks.
Thus we mark all of blocks in between as po-

tential edge blocks.

T

Figure 3: One possible scenario in which two dots
will be connected

Finally we combine these partial edge maps
from Canny Edge Detection, figure 11 and
from Edge Completion, figure 12, and pro-
duce the full view object edge map in figure
13 by restricting the total region counts in the
window.

3. Region assignment

With the edge map in hand, we proceed to as-
sign each image pixel into a region. We know
for sure that pixels enclosed in the same re-
gions must belong to the same polygons. But
we are not guaranteed whether two different
regions correspond to disparate polygons or
not. Notice that discontinuities of surface ori-
entations are not the only reasons for edges
in the images. Other artifacts such as change
in material properties (color, reflectance and
etc.) and changes in scene illuminations may
also result in edges in the perceived images.
We need to account for these artifacts. !

4. Reconstructing polygons

We import the results from the preliminary
triangulation. In particular, to account for
the inaccuracies incurred due to floating point
calculations and projection errors, we ar-
gue that for each triangulated point, close-by
neighbors 2 should all correspond to the same
3D points. We claim that a region is prop-
erly defined if and only if we could find three
or more points on the corresponding patches.
For each of these proper regions, we find the
plane equation of its corresponding 3D patch
by interpolating the 3D locations of the points
sitting in the region.

5. Recover points within a polygon

This is the final step of our reconstruction
process. For any pixel x in the full view im-
age, if it belongs to a region that is properly
defined, i.e. we know the plane equation of
the corresponding polygon D, we estimate
the 3D location of z, which is denoted as X,
by solving the following minimization prob-

"Within the scope of this project, we decide to manually
combine regions that should have been grouped together. But
if time allowed we could have explored more in details and
recover the information through material properties, shadow-
ing and etc. (Bell et al., 2015)

"Here we impose a 5-pixel-by-5-pixel window to deter-
mine nearby neighbors



lem.
mini)l(nize distance(X, D)
subjectto PX ==z

Where distance(-, -) is the distance function
from a point to a plane, and P is the projec-
tion matrix associated with the full view im-
age.

3.2.2 Symmetry Approximation

In this section we make the assumption that the
target object is nearly symmetric. We also assume
that the full view image is taken with the target
object facing right in front of the camera, and the
camera projection is roughly affine.

The high level idea of this approach is to find the
symmetry plane, and then estimate the distance to
the symmetry plane based on the distance we re-
trieve from the full view image. When the sym-
metry plane is perpendicular to the image view,
the symmetry plane is projected into a symmetry
axis. Therefore, the problem of finding the sym-
metry plane is equivalent to finding the symmetry
axis in the image in this case.

Our symmetry detection algorithms consider
two cases. The first algorithm tries to resolve the
simplified version of symmetry detection: it as-
sumes the image is taken parallel to the plane the
object is placed. Therefore, this symmetry axis is
a vertical line in this case. The second algorithm
is more generic, because it will find the symmetry
axis of any arbitrary near-symmetric image, given
that the symmetry plane is perpendicular to the im-
age view.

Both algorithms first use canny edge detector
to find edges of the image. For convenience, the
mask is denoted by Mpg. canny edge detection
tracks edges by suppressing all the other edges that
are weak and not connected to strong edges using
two thresholds (upper and lower). In our case, the
lower threshold is particularly interesting because
it suppresses weak edges. Here we set the lower
threshold to be sufficiently large to filter away as
much weak edges as possible; this also reduces the
amount of computation for the symmetry detec-
tion algorithm, which is explained next.

1. Symmetry Detection algorithm for vertical
symmetry axis

This algorithm takes each row of Mg and
applies a Gaussian filter. This generates the

vector p,(Mpg). Then it finds the z( value
that maximizes the sum of the convolution of
each row of Mg and its “reflection” across

v = 0. 0]y (M),

x = argmazz, » | pi(Mg) * p} o (ME)

(3

The time complexity of this algorithm is
O(osize(ME)), where o is the standard devi-
ation of the Guassian filter. Higher o means
higher error tolerance in symmetry matching.

. Symmetry Detction algorithm for arbi-

trary symmetry axis

This algorithm uses Hough Transform to find
the symmetry axis.The symmetry axis could
be denoted as

xcosh +ysinf =p

. We could find the potential symmetry axis
by looking at any pair of points (z1,y1),
(z2,y2) and assuming they are symmetric.
This would give us:

tanf — Y1 — Y2
1 — X9
p= xl;—@ Cos@—i—%sin&

The number of bins we use is 1000 for p and
20 for 6. The bin with the highest frequency
gives us the best estimate.

After finding the symmetry axis, we could
use the triangulation method to find the sym-
metry plane S, by picking SIFT keypoints
close to the symmetry axis and interpolat-
ing these points. Also using SIFT, we could
get correspondence between the the points
we want to estimate 3D locations for and
their symmetric counterparts. This is done by
flipping the full view image horizontally and
then perform SIFT between the original full
view image and the flipped one.

For each symmetric pair (x, y), the distances
to the symmetry plane should be the same for
x and y in 3D space. Therefore if we know
the 3D location of y is Y, we can calculate
the distance from y to S. The 3D location of
x, which is denoted as X, can thus be esti-
mated by solving the following minimization



problem.

mini)gnize |distance(X, S) — distance(Y, S)

subjectto PX =z

Where P denotes the projection matrix of the
full view image.

3.2.3 Ratio Approximation

The last heuristic is based on the fact that affine
projections preserve the ratio of lengths for paral-
lel line segments. Given an affine transformation
A(p) = Mp+Db, the ratio of lengths between par-
allel line segments is invariant. This is true since
two parallel line segments 1; and 1l has the rela-
tionship 1; = kla, and after affine transformation
the ratio of lengths is

IML | _ kM| _
BT

1
L Il

12|

In reality the camera projection is not affine -
however for the sake of approximation we assume
the camera is close to affine. If we can find two
parallel line segments from the image which con-
tains the entire object, then we can compute the
ratio of lengths of these two segments. Assum-
ing an affine transformation, the ratio of lengths of
these two line segments should remain the same
after we project them back into 3D world space. If
we happen to know the length of one line segment
in the 3D world space, then we can calculate the
length of another one, thus potentially giving us
more new constraints on the unknown point loca-
tion.

(@) (b)

Figure 4: Example of pot. Figure 4(a) shows only
part of the pot while figure 4(b) shows the entire
pot. Our goal is to reconstruct the part that is oc-
cluded by the book.

Here is an illustration using the example of a
pot. Suppose we want to estimate the 3D loca-
tion of point x, which is indicated as a red spot
in Figure 4(b). Clearly the pot is asymmetric, and

Figure 5: Graphic illustration of applying ratio ap-
proximation

thus we cannot apply symmetry approximation to
this object; patch approximation also faces obsta-
cles as we need to know at least 3 more points on
the pot handle, which in this case is impossible to
know given the occlusion in Figure 4(a).

In order to apply ratio approximation, we first
find a vertical line [ in figure 4(b) using the same
way as we find the vertical symmetric axis in sym-
metry approximation. Notice that in this case we
use the same method but the line we find no longer
carries the meaning of a symmetric plane - it only
serves as a reference line. After that, we choose a
SIFT point y that is located on the opposite side of
[ from x. From here we can calculate the distance
from z to [ and from y to [. Denote them as [, and
I respectively.

The rest part is similar to what we do in sym-
metry approximation. Again, we assume that we
can find at least 3 SIFT points on line [ which we
already know the 3D locations - thus when [ is pro-
jected back into 3D space we can approximate this
plane S by interpolating these 3 SIFT points. We
also find the 3D location of point y, and hence we
can calculate the distance from Y to plane .S in the
3D space. Let it be 1. If the distance from the 3D
location of point x to plane S is l'l, then we have
the following ratio of length equality:

h_h
I~y

l1, l9 and l’2 are all known. Thus we can compute
l}. Now we know the distance from the 3D loca-
tion of x into plane S, and therefore we have one
more constraint which allows us to solve for actual
X.



4 Experiments

4.1 Experimental Setup

For the experimental setup, we need to take two
images of the same target object. The full view
image contains the entire front face of the target
object unoccluded; while another image only con-
tains the target object occluded by other objects.
Our goal is to use these two images and recon-
struct the part that is occluded by other objects.

Figure 6: Experiment 1. The target object is the
Chinese doll.

(b)

Figure 7: Experiment 2. The target object is the
chair.

(b)

Figure 8: Experiment 3. The target object is the
pot sitting on the table.

In order to evaluate our reconstruction result,
for each experiment we also take a third image,
which also contains the entire front face of the ob-
ject.

By including the third image, we are able to use
triangulation to accurately find 3D locations of all
points that we see on the front face of the target
object. This is the baseline result for our experi-
ments - when implementing our heuristics we are

Figure 9: SIFT matching points we find for experi-
ment 1. The red lines are the epipolar lines at each
point.

Figure 10: Triangulation result for SIFT matching
points in experiment 1

only going to use the images shown in Figure 6, 7
and 8. For points we have estimated, we are go-
ing to compare their estimated locations with the
actual locations found from triangulation.

4.2 Experiment Results

4.2.1 Triangulation Result

The first part of the experiment is to find 3D
locations of points that appear in both images.
This provides some basic information about cer-
tain parts of the object and is needed for each of
the heuristic we propose.

We calculate the intrinsic camera matrices using
single view metrology. After that, we use SIFT to
find matching points in the two images. For these
matching SIFT points, we apply projective trian-
gulation in structure from motion to estimate the
rotation and translation matrices R and 7" of cam-
eras, and therefore find the 3D locations of those
matching SIFT points (For more details, refer to
CS231A HW?2 Question 4). Figure 9 and 10 show
the resulting 3D points we find for experiment 1.



Figure 11: Pure Canny Edge Detection Result
with Canny Bound as 10~ and 0.05

Figure 12: Edge Completion Result

4.2.2 Patch Approximation Result

Figure 13 shows the resultant full edge map we get
for experiment 1, using edge detection and edge
completion technique we mentioned in Technical
Details section.

Using Figure 13, we are able to assign regions
for the target object. Figure 14 shows the region
map we get experiment 1.

With region map, we are able to approximate
the plane equation of some of the regions if we al-
ready have three or more SIFT points with known

Figure 13: Combine Edge Detection Results and
Edge Completion Results

Figure 14: Region assignment for experiment 1

Figure 15: Reconstruction result with patch ap-
proximation on experiment 1

3D locations sit on the regions. Thus we are able
to recover the entire polygon by estimating the 3D
locations of each pixel in that region. The recon-
struction result is shown in Figure 15 and 16.
Note that certain part of the object is missing,
since the region at those parts do not have suffi-
cient number of SIFT points for us to approximate
the plane equations. We also try patch approxima-
tion for experiment 2 and 3 - however the results
are mostly unsatisfactory because the number of
patches on the target object which we can approx-

Figure 16: Reconstruction result with patch ap-
proximation on experiment 1 projected onto the
occluded image



Figure 17: Symmetric line generated for experi-
ment 1

Figure 18: Symmetric line generated for experi-
ment 2

imate is limited (fewer than 3 in experiment 2 and
3). And the occluded part are mostly not sitting
on those patches. Therefore, patch approximation
cannot achieve much in such scenarios.

4.2.3 Symmetry Approximation Result

We first use canny edge detector to generate the
vertical symmetric line. Figure 17 and 18 show the
resulting symmetric lines we get for experiment 1
and experiment 2.

With the symmetric line, we are able to calcu-
late the equation of the symmetric plane. The next
part is find symmetric point correspondences. As
described in Technical Details section, we flip the
image horizontally and then use SIFT matching
again to find matching between the original image
and the flipped image. The resulting symmetric
point correspondences we find for experiment 1 is
shown in Figure 19.

After we find the symmetric plane S as well as
all these symmetric point correspondences, we ap-
ply symmetry approximation to each pair of cor-
respondences we find. Figure 20 and 21 show the
estimated 3D locations of the SIFT points where
we can only see from the full view image for ex-
periment 1 and 2.

Figure 19: Symmetric point correspondences
found by flipping images and SIFT matching for
experiment 1

Figure 20: Reconstruction result for experiment
1. Blue points indicate SIFT points where we al-
ready know the 3D locations from triangulation;
red points are the ones we estimate from symme-

try.

Figure 21: Reconstruction result for experiment
2. Blue points indicate SIFT points where we al-
ready know the 3D locations from triangulation;
red points are the ones we estimate from symme-
try.



Figure 22: Reconstruction result for experiment
3. Blue points indicate SIFT points where we al-
ready know the 3D locations from triangulation;
red points are the handle part which we estimate
using ratio approximation.

4.2.4 Ratio Approximation Result

Since ratio approximation is essentially an exten-
sion of symmetry approximation, we expect simi-
lar results to be achieved for experiment 1 and 2.
Thus, our main focus here is the result for exper-
iment 3. We pick 10 SIFT points on the handle
part of the pot from the full view image and try to
estimate their 3D locations. Figure 22 is the re-
construction result for the handle of the pot.

4.3 Result Evaluation

As mentioned previously, we also have a ‘hidden’
image for each experiment so that we can perform
triangulation on the points we estimate during ex-
periments in order to achieve a baseline result for
their 3D locations.

For patch approximation, we are able to recover
all pixels sit in the same region if we can calcu-
late the plane equation for the region. The obsta-
cle is that it is extremely difficult for us to triangu-
late all these points and compare the results - thus
we choose to visually verify the result and based
on Figure 15, the reconstruction result is satisfac-
tory for experiment 1. As mentioned before, this
approximation only works well for experiment 1
since we are unable to locate many useful patches
for experiment 2 and 3.

For symmetry approximation and ratio approxi-
mation, we only reconstruct those SIFT points that
can just be seen in one view; therefore we are able
to use the hidden image to actually perform tri-
angulation and find their 3D locations (subject to
projective ambiguity).

Figure 23: Re-projection result for experiment 1;
White points are SIFT points that are re-projected
back; yellows points are SIFT points for symmet-
ric correspondences.

Figure 24: Re-projection result for experiment 2;
White points are SIFT points that are re-projected
back; yellows points are SIFT points for symmet-
ric correspondences.

In order to compare our estimation with the tri-
angulated locations, we project both our estimated
3D points and the triangulated 3D points back onto
another image, where the target object is occluded
by another object. In ideal situation, these points
should sit in regions which are occupied by the oc-
clusion when projected back onto the image. We
can visually verify that to determine if our estima-
tions are good or not. Furthermore, we can com-
pute the average Euclidean distances between the
2D points projected back from our estimations and
the ones projected back from triangulation. We
use this as our reconstruction error.

Figure 23, 24 and 25 show the re-projection re-
sults when we project our estimated points back
onto the image with occlusion for experiment 1, 2
and 3. Table 1 shows the reconstruction error for
each of the experiment and the heuristic we adopt.



Figure 25: Re-projection result for experiment 3;
White points are SIFT points that are re-projected
back. There are no yellow points on this graph as
we use ratio instead of symmetry approximation.

Experiment | Heuristic | Reconstruction Error
1 Symmetry 1.11
2 Symmetry 32.40
3 Ratio 5.70

Table 1: Reconstruction error for different experi-
ments

We also have estimation error during triangulation.
The average triangulation error when using non-
linear estimate (refer to CS231A HW2 Question 4
for more details) for each of the 3 experiments is
listed in Table 2.

Experiment | Triangulation Error
1 0.97
2 1.50
3 2.00

Table 2: Triangulation error for different experi-
ments

Comparing results in Table 1 and 2, we observe
that the reconstruction error is close to the trian-
gulation error when we use symmetry approxima-
tion on the Chinese doll. This also gets visually
verified by Figure 23, where the white points sit
roughly at the expected locations.

Meanwhile, the reconstruction error on chairs
when using symmetry approximation is about 20
times as large as the triangulation error. We can
verify this by observing that most white points
in Figure 24 are located in ground, implying that

many the 3D estimates are deviated significantly
away from the actual 3D locations. A poten-
tial explanation for this is the dark light condition
when conducting experiments which causes trou-
ble for finding symmetric correspondences using
SIFT. This shows that symmetry approximation is
very sensitive to the environment light as it makes
heavy use of SIFT.

The reconstruction performance for experiment
3 is somewhat in between the performance for ex-
periment 1 and the performance for experiment
2. From Figure 25 we see there are a few points
that are off the expected locations; but most of
the white points are still around the handle area
(which is covered by the book).

5 Conclusion

We show that using patch, symmetry and ratio
approximation, we are able to reconstruct certain
occluded parts of the target object given that oc-
cluded part is only seen in one view. Different ap-
proximations do suffer from different drawbacks
- patch approximation requires a good amount of
patches to be approximated; symmetry approxi-
mation requires the target object to be nearly sym-
metric; and lastly both symmetry and ratio approx-
imation make the assumption that the camera is
close to affine. Therefore, a potential future work
for our project is to combine different heuristics
together and compare the overall reconstruction
result with the one we achieve when using indi-
vidual approximation.

Our code can be found at https://www.
dropbox.com/sh/3a67yvxpela9osn/
AAB3N4 jJI5HpvqOESLHNZpMTea?dl=0 .
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